Predicting Crime
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Have you ever WITNESSED a crime?

Or been the VICTIM of a crime?

Were you WORRIED about justice
being served?
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Introduction |

Leveraged the power of data
|dentify determining factors
Build predictive model
Case by case resolution
probability

Victim Support and Policy
Implications
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Motivation

Article published on June 23, 2023 ©CB S
Nearly Half of US Murders go Unsolved as cases ‘\ ‘ I i : ‘ ‘ /S
Rise

Article published on February 27, 2023 Th

Far From Justice
“‘Homicide clearance rates]...] have reached to an all- uar

a
time low of 50% in 2020.” d an I
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Data



https://redoubtnews.com/event/crime-prevention-boundary-county/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Source Time Period

Data.la.org ," February 2018 -
' 4
Owner : LAPD W October 2023

Features

Victim Information
Geographic Information
Premise Information

Dimension

Rows : 1.2 million rows
Columns : 22

Each row is acrime Type of crime
incident report Weapons Used
Status
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TREND ANALYSIS OF RESOLVED AND UNRESOLVED CRIMES
(Los Angeles)
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October 2019 February 2020 June 2020

October 2020 February 2021 June 2021 Octaber 2021 February 2022 June 2022 Octaber 2022 Febeuary 2023 June 2023 Dctober 2023
Maonth of Date of Occurrence
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B UNRESOLVED
B RESOLVED

TIME PEROID
February 18 — October 23

PLOT
Month of
Occurrence
#Crimes 1
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OBSERVATIONS

e Decreasing trend of

resolved crimes

® Ratio decreases from
1:3in June 2018 to 1:7
in June 2023
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Where are you SAFE?
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CRIME ANALYSIS BY TIME OF DAY
Al
Does Time of
Occurrence impact

crime resolution?

Los Angeles

Highest crime occurrence period
Afternoon (12 PM - 6 PM)

[ twng gt Highest proportion of crime
PREMISES - Los Angeles resolved
Night (12AM — 6AM)
PREMISE Afternoon Evening Morning Night
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ANALYSIS OF VICTIM DEMOGRAPHICS - WEAPON USE AND PREMISE

{Unresolved)

WEAPON USE IN CRIMES
(FIREARM)

Type of Crime

STATUS
(211)
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VANDALISM

o -
I:l

WEAPOM ASSULT

42
WEAPON TYPE
FIREARM
1s 20 22 24 25 28 30 32 34 35 38 20 4z 44
#Crimes
i View on Tableau Public b} Y oo |

o
"

n
o
o
"
5
"
[
M

"
M
o




Predictive
Model

* Probability of Resolution
« Case by Case Resolved

vs Unresolved Prediction




Victim Details

Report Date

Methodology

Status & Status Desc
Unresolved -
Investigation Continued
with a lag of 6+ months

Location and Premise
Type of Crime
Date/Time of Occurrence
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_W @ python

jupyter

_I MODEL I

Binary Classification
Problem
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Resolved(0)
Unresolved(1)
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Machine Learning Models — Classifiers

Machine learning is a branch of artificial intelligence (Al) and computer science which
focuses on the use of data and algorithms to imitate the way that humans learn,

gradually improving its accuracy.
L

-1BM

Decision Tree Random Forest Extreme Gradient
Boostin

Accuracy -71.92% Accuracy - 78.98 % Accurac —87g71‘7

Precison - 70.02% Precison - 82.44% yz oA

Precison - 87.76 %
F1Score -87.21%
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F1Score-70.21% F1Score-80.17%
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Observations

Type of Crime comes out as a key

feature in the model. @

Identity Theft, Grand theft, Homicide - a—
L

and Crimes against Children have
higher probability of resolution while
Financial Crimes, Assault and
Vandalism have the least probability
of arrest.

Gender and Race do not turn out >

. ‘g o [ ] ]
as significant parameters in our L 4
analysis AgdS

Lag in Reporting is an important
feature our the model. However, Date
and Time of Occurrence of the
crime do not have a significant impact
on arrest probability.

In Areas like North Hollywood,
Newton and Southeast of Los
Angeles, it is more likely that arrests
will be made for a given crime.

For Premise, crimes that occur in
domestic areas have higher arrest
rates.
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Model Demo
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Age= int(input("Enter Victim Details: Age - "))
Gender= input("Enter Victim Details: Gender - ")
Race= input("Enter Victim Details: Race - ")

R R R R R R R R R R R R R R R R R R R R R R R R R A R AR B R R R R A R AR R AR B R H AR R B RH R #R
HERARRRA AR AR RAARAH ENTER DETAILS ON TIME OF OCCURANCE ###A##A#RAAHAAAFAARAAAHR
AR R R R R R R R R R R R R R R R R R R R R AR R R R R R AR R A R AR R AR R AR R AR B R AR R AR R AR RRRHRE
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Strategic Implications

Realistic Expectation

VICTIM

Support and Focused
Investigation

Tailored Services

COMMUNITY

Public Awareness

Safety Perception
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THANK YOU
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